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Abstract
We use Monte Carlo methods to study knotting in polygons on the simple
cubic lattice with a stiffness fugacity. We investigate how the knot probability
depends on stiffness and how the relative frequency of trefoils and figure eight
knots changes as the stiffness changes. In addition, we examine the effect of
stiffness on the writhe of the polygons.

PACS numbers: 05.50.+q, 05.10.Ln, 82.35.Lr

(Some figures in this article are in colour only in the electronic version)

Long linear polymers in dilute solution can be self-entangled and, if a ring closure occurs, these
entanglements can be captured as a knot in the ensuing ring polymer. This phenomenon has
been widely studied, partly because of its relevance to molecular biology where the presence
of knots in circular DNA can give information about the mechanism of action of enzymes,
such as topoisomerases and recombinases [1–3]. Knots and entanglements also affect physical
properties of polymers [4].

Random knotting has been studied seriously for the last 20 years in a variety of models of
ring polymers. One popular model is polygons on the simple cubic lattice Z3 or on other three-
dimensional lattices. It is known rigorously [5, 6] that the probability that a lattice polygon is
unknotted goes to zero exponentially rapidly as the number of edges (n) in the polygon goes
to infinity. Similar results are known [7] for some off-lattice models. These theorems do not
say much about knot probabilities when n is finite but there are many Monte Carlo studies of
this question [8–10]. Some of these [9, 10] have looked at the relative probability of forming
different knot types.

Since different polymer molecules have different flexibilities, it is natural to ask how
the knot probability depends on the flexibility. Since the number of right angles (between
adjacent edges) in a polygon are related to flexibility, we associate a number ci to the
ith vertex, i = 1, 2, . . . , n, where ci is 1 if the two edges meeting at vertex i are at right
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angles and zero otherwise. Then, we define the curvature of the polygon as k = ∑
i ci . Let

pn(k) be the number of n-edge polygons with curvature k. Define the partition function as

Zn(γ ) =
∑

k

pn(k) eγ k, (1)

where γ is the curvature fugacity. It is known [11] that the limit

F(γ ) = lim
n→∞ n−1 log Zn(γ ) (2)

exists. If we define p0
n(k) to be the number of n-edge unknotted polygons with curvature k

then the corresponding partition function is

Z0
n(γ ) =

∑

k

p0
n(k) eγ k (3)

and the limit

F 0(γ ) = lim
n→∞ n−1 log Z0

n(γ ) (4)

exists [11]. The probability that a polygon is unknotted at curvature fugacity γ is

P 0
n (γ ) = Z0

n(γ )

Zn(γ )
= exp(−(F (γ ) − F 0(γ ))n + o(n)) (5)

and it is known [11] that F 0(γ ) < F(γ ) for all finite γ . That is, unknotted polygons are
exponentially rare for every finite curvature fugacity. A natural question which follows from
this is how F(γ ) − F 0(γ ) depends on γ . For instance, is F(γ ) − F 0(γ ) monotone in γ ?
Such questions are beyond the reach of current rigorous approaches and in this letter we shall
investigate this kind of question using Monte Carlo methods.

Lattice polygons with a fixed number of vertices can be sampled efficiently by Monte
Carlo methods based on a two-point pivot algorithm [12]. Although this algorithm works well
for γ = 0, at large γ quasi-ergodic problems can occur. To mitigate this problem, we have
combined the pivot algorithm with the multiple Markov chain algorithm [13]. The idea is to
run a set of Markov chains in parallel (at a fixed set of γ values) and to swap configurations
between the individual Markov chains. For details see [14, 15]. Simulations have been carried
out by considering up to 17 Markov chains in parallel and configurations have been sampled
every m-attempted pivot moves. The value of m increases with the number of edges (n) in
the polygon and it ranges from 100 (for n = 400) up to 7200 (for n = 3200). The data were
analyzed by using standard techniques to find autocorrelation times and statistical confidence
intervals [16].

Once a polygon has been generated we need to determine if it is knotted or unknotted.
We do this by computing the value of the Alexander polynomial �(t) at t = −1 [8, 17]. If
|�(−1)| �= 1 then the polygon is a knot. Otherwise we assume that it is the unknot. This
procedure will miss some knots but we do not expect this to be a serious problem at the
values of n which we consider. When |�(−1)| �= 1, we know that the polygon is knotted but
different knots (e.g., 41 and 51) can have the same value of |�(−1)|. To help to distinguish
pairs of knots, we have also computed |�(−2)|. In fact, the Alexander polynomial itself is
not a perfect invariant and is unable to distinguish every knot type. For instance, the prime
knot 811 has the same Alexander polynomial as the composite knot 31#61 and 815 has the same
Alexander polynomial as 31#72.

The mean curvature 〈k〉 should be an increasing function of γ and we show the
γ dependence of 〈k〉/n for several values of n in figure 1. Clearly, 〈k〉/n approaches
limn→∞〈k〉/n ≡ ρ(γ ) rapidly as n → ∞, and we call ρ(γ ) the limiting density of right
angles. Clearly, 0 � ρ(γ ) � 1 and ρ(γ ) approaches zero monotonically as γ → −∞.
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Figure 1. The γ dependence of the mean curvature density, 〈k〉/n for different values of n.
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Figure 2. The knot probability 1 − P 0
n as a function of 〈k〉/n for various values of n. The error

bars represent one standard deviation.

The density of right angles in a polygon when γ = 0 (i.e., when the polygons are uniformly
weighted) is roughly ρ(0) ≈ 0.77.

In figure 2, we show the knot probability, 1 − P 0
n (γ ), as a function of 〈k〉/n for various

values of n. For each value of n, the knot probability goes through a maximum at approximately
〈k〉/n ≈ 0.2, which corresponds to γ ≈ −3. There are two interesting things to note. First, the
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values of 1−P 0
n (γ ) are quite high at this value of 〈k〉/n compared to the values at 〈k〉/n ≈ 0.77

(corresponding to γ = 0). Second, γ = −3 corresponds to a rather stiff polygon with a
relatively low density of right angles. At first sight this seems counter-intuitive, since one
might expect knots to be less common in such stiff polygons. We believe that this increase in
the knot probability can be understood by the following argument. Consider polygons with n
edges with their natural density of right angles, 〈k〉/n ≈ ρ(0) ≈ 0.77. Their knot probability
1 − P 0

n (0) ≡ Pn(0) is an increasing function of n, going to unity as n → ∞. We define a
U-turn to be a sequence of three edges e1, e2 and e3, such that e2 is perpendicular to e1 and e3

is the reverse of e1. We write u for the number of U-turns and λ = limn→∞〈u〉/n. The density
of U-turns at γ = 0 is approximately 0.42. Consider now a fixed γ = γ̃ < 0. At this value of
γ , the density of right angles is 〈k〉/n ≈ ρ(γ̃ ) and the density of U-turns is 〈u〉/n ≈ λ(γ̃ ). If
we remove n(λ(0) − λ(γ̃ )) U-turns from typical uniformly weighted polygons with n edges,
we decrease the number of edges by 2n(λ(0) − λ(γ̃ )) obtaining polygons with

ñ = n(1 − 2λ(0) + 2λ(γ̃ )) (6)

edges. The operation of removing U-turns does not change the knot type. Consequently, we
expect the knot probability for polygons with n edges and zero curvature fugacity (i.e., with
the natural density of right angles) to be comparable to the knot probability of polygons with
ñ edges and curvature fugacity γ̃ . Since ñ < n and Pn(0) is an increasing function of n, we
expect that

Pn(0) ≈ Pñ(γ̃ ) > Pñ(0). (7)

Consequently, at fixed n the knot probability should increase as γ decreases, and therefore,
as the density of right angles decreases. Of course, as 〈k〉/n → 0 eventually the polygon
approaches a rectangle and the knot probability goes to zero. This argument roughly explains
the general features seen in figure 2.

One might expect the distribution of knot types to change as γ changes. It is well known
from numerical work that the knot type distribution depends on n [9]. For instance, the
probability that the knot type of a polygon is 31 (a trefoil) first increases as n increases, and
then decreases exponentially rapidly for large n. The same is true for more complicated knots
but the location of the maximum in the probability is at larger values of n for more complex
knots. For instance, the maximum is at larger n for 41 than for 31. The ratio

(
P41

/
P31

)
of

probabilities that the knot is 41 and 31 is shown in figure 3 as a function of 〈k〉/n for various
values of n. For the range of values of 〈k〉/n investigated this probability decreases as the
density of right angles increases. This can be understood by an argument similar to that given
above. The knot distribution at some γ̃ < 0 (but not too negative) and length ñ should be
roughly the distribution at γ = 0 and length n, where ñ and n are related by (6). For the values
of n with which we are concerned the ratio P41

/
P31 increases with increasing n at γ = 0 so,

at fixed n, we expect this value to be higher for γ = γ̃ < 0 than for γ = 0.
Polygons can also experience geometrical entanglement as well as topological

entanglement. This can be conveniently characterized by the writhe (Wr) of the polygon.
We have also investigated how the writhe depends on the density of right angles for various
values of n. Rigorous bounds indicate that, for all γ , the expectation of the absolute value of
the writhe increases as least as rapidly as n1/2 [18, 19] and there is numerical evidence that
for γ = 0

〈|Wr|〉 ∼ nθ (8)

with θ being very close to 1/2 [18]. In figure 4, we plot 〈|Wr|〉/n1/2 against 〈k〉/n and we
see that the data for different values of n collapse quite well onto a single curve, suggesting
that (8) is satisfied with θ ≈ 1/2 for γ �= 0.



Letter to the Editor L799

0 0.2 0.4 0.6 0.8 1
< k >/n

0

0.05

0.1

0.15

0.2

P 4 1 / 
P 3 1

800
1200
1600
3200

Figure 3. The ratio P41 /P31 of probabilities that the knot is 41 and 31 as a function of 〈k〉/n for
different values of n.
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Figure 4. The mean of the absolute value of the writhe scaled by n1/2, as a function of 〈k〉/n for
different values of n.

We have investigated how the knot probability depends on stiffness fugacity and given
a semiquantitative argument for the observed behaviour. There is a characteristic stiffness
fugacity which maximizes the knot probability and the value of this parameter is not strongly
dependent on n. We have also investigated how the relative probability of the polygon being
a trefoil (31) or figure eight knot (41) depends on stiffness fugacity and length. We computed
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the writhe as a function of stiffness fugacity and found that the expectation of the absolute
value of the writhe scales in a similar way for γ �= 0 as for γ = 0.
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